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Analysis of Discontinuities in an Asymmetric
Dielectric Slab Waveguide by Combination
of Finite and Boundary Elements

Koichi Hirayama, Member, IEEE, and Masanori Koshiba, Senior Member. IEEE

Abstract—An approach that combines the finite-element and
boundary-element methods is extended to the analysis of dis-
continuities in an asymmetric slab waveguide. The discontinu-
ity region is divided into three regions. One is a finite region
with arbitrary inhomogeneities, and the others are semi-infinite
and homogeneous regions. The finite-element and boundary-
element methods are applied to the former and latter regions,
respectively. For uniform waveguide regions connected to dis-
continuities, analytical solutions are used, in which all the ei-
genmodes, namely guided modes, substrate radiation modes,
and substrate-cover radiation modes are taken into account.
To show the validity and usefulness of this approach, computed
results are given for three kinds of step-discontinuities with TE
and TM mode incidences.

I. INTRODUCTION

INCE an optical waveguide is in general made up of

three dielectric layers called cover, film, and sub-
strate, it is very important to analyze discontinuities in an
asymmetric planar dielectric waveguide. However, there
are few theoretical methods for the solution of the discon-
tinuities. One of the reasons is that the asymmetric wave-
guide has complicated eigenmodes consisting of guided
modes, substrate radiation modes, and substrate-cover
radiation modes. The nature and behavior of these modes
are detailed in Chapter 1 of [1]. An approach proposed by
V. Ramaswamy and P. G. Suchoski, Jr. [2] takes trans-
mitted guided modes, substrate radiation modes, and the
propagating part of substrate-cover radiation modes into
account, but ignores reflected guided modes and the non-
propagating part of substrate-cover radiation modes.

For discontinuities in a dielectric waveguide, we have
proposed an approach based on a combination of the fi-
nite-element and boundary-element methods (CFBEM)
[3], [4], and have confirmed that the CFBEM is very use-
ful for arbitrarily shaped discontinuities. However, the
approach is limited to discontinuities in a symmetric slab
waveguide.
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In this paper, we extend the CFBEM to the analysis of
discontinuities in an asymmetric slab waveguide. Here,
all the eigenmodes in the waveguide are taken into ac-
count. To show the validity and usefulness of this ap-
proach, computed results are given for three kinds of step-
discontinuities with TE and TM mode incidences.

II. Basic EQuATiONS
Consider an asymmetric planar dielectric waveguide as
shown in Fig. 1. The boundaries I's" and T’y are placed
at infinity (y = £ o0) and the boundary
D, =T;+T3 + T

1

(i=12)

connects the discontinuity region to the uniform wave-
guide i, where d; and n; (j = 1, 2, 3) are the thickness
and the refractive index of waveguide i(n, > n, > n;3),
respectively. The region Q surrounded by the boundary

F[: = FIF + FZF + F(3+) + Pg_)

completely encloses the discontinuity region, the region
Q5" is surrounded by the boundaries

I =T9 + 'y’ + I§°

and T'*, and the region Q4 is surrounded by the boun-
daries

) = T + T+ 1Y

and I'{7.

Assuming that there is no variation of fields and refrac-
tive indices in the horizontal transverse z direction (see
Fig. 1), we consider the following basic equation for har-
monic wave propagation in the x direction:

}, <% + Z;‘?) + kigp = 0 M

where
¢ =E p=1 g=n> for TE modes (2a)
¢=H, p=n® qg=1 for TM modes (2b)
ko =27 /. (3)
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Fig. 1. Longitudinal cross-section of asymmetric planar dielectric wave-
guide.
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Here E, and H, are the z components of the electric and
magnetic fields, respectively, and A is the wavelength of
a plane wave in free space.

Since the normal derivative of ¢ on T'y, I'5, $Y, and
I'{") appears in the finite element, boundary element, and
analytical approaches which will be presented in the next
section, in advance we define a function y proportional to
it as follows:

Y = ~Nd¢/dx onT, (4a)
¥ = N3¢ /dx onT, (4b)
¥ = —Nd¢/dy  onT5" (4c)
Y = Ndo /dy on T§. (4d)

III. MATHEMATICAL FORMULATION

A. Finite Element Approach for Qp

Dividing the region Qf into a number of quadratic tri-
angular elements, using a Galerkin procedure on (1), con-
sidering the contributions of all elements, and eliminating
internal variables, namely the nodal points in Qp except
I'y, we obtain the following small-sized matrix equation:

[4] {¢}F = [B] {¥}r (&)
where the components of the {¢}; and {y}r vectors are

" the values of ¢ and ¥ at the nodal points on 'z, respec-
tively.

B. Boundary Element Approach for Q" and Q3

Applying the BEM with quadratic line element to the

regions Q5" and Q% , and considering the radiation con-
dition on I'§"” and ', we obtain the following matrix

equations:
[HIP{s}5” = [G1V{}s”  inQF” (6
HIO{e)s) = [G17{¥}s” Qg  (6b)

where the components of the {¢}5" and {y}§" vectors
are the values of ¢ and  at the nodal points on I'§",
respectively.

C. Analytical Approach

Assuming that the fundamental mode (m = 0) of unit
amplitude is incident from the left side of waveguide 1 in
Fig. 1, ¢ on I'; (i = 1, 2) may be expressed analytically

as
{o}: = 8l f}1 + [Z): (¥} N
where
{f} = 2{fo} (8a)
Mot
_ a7
20 = 2~ Unbd &l
kOV"zzl_"zz.% 1 o
S 2P () VRS ST PR S
+ SO ~jﬁ,(p)>\{f (0)}: {8V ()}, dp

* 1
* Skovnfl —-nk _sz(P) A
x {0}, {8V}

+ {2} { 2%} do (8b)
{8n}i = E S,g,m(y’) {N}, gy’ (8¢)

{ g(*‘)(p)}l =§7“ Se, ggr)(p’ y )N} dy,
r=20,1,2. (8d)

Here §,; is the Kronecker §, p is the wavenumber of the y
direction in the substrate layer, and M; is the number of
guided modes in waveguide i. The components of the
{¢’}i7 {‘l/}h {fm}h and {f(r)(p)}i (r = O’ 1, 2) vectors are
the values of ¢, ¥, fin(¥), and f(p, y), respectively,
{N}; is the shape function vector on I';, and the super-
script T denotes a transpose. A summary of the mode
functions f,( ), &n(¥), fO(p, ¥). and g{”(p, y). and of
the propagation constants 8,, and B;(p) is given in the
Appendix. In (8b), the integrals with respect to p are cal-
culated numerically.

'

D. Combination of Finite and Boundary Elements

From (5), (6), and (7), we obtain the following final
matrix equation:
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where the components of the {¢}$ and {y}{*) vectors
are the values of ¢ and ¢ at the nodal points on I'{*’,
respectively, [1] is a unit matrix, [0] is a null matrix, and
{0} is a null vector. The columns of [4'] and [B'] cor-
responding to the nodal points of I'x are the same as those
of [A] and [B], respectively, and the others are zero.
[H']*) and [G']'*’ are generated in the similar way from
[H1®) and [G]'®’, respectively.

The solutions of (9) allow the determination of the nor-
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Also, we divide the integrals with respect to y in the an-
alytical approach into three parts, namely,

those in —D7) < y <

those in ~o0 < y < —D'7),
those in —D7) < y < D),

malized reflected power |R,|* and the normalized trans- and
mit'ted power |T,,|* of the mth mode, and the normalized those in D) < y < .
radiated power P;, in waveguide i as follows:
B
R, |* = = w0 o (10a)
I I BIO Blm { }
Ban| 1 ’
T, " = 2 (= {83 {uh (10b)
Bio | —JBamh
koxln né
Pir ¢ ¥ <S A(O)(p) 1 A(O)(p) ,po
Bm}\{ 3 5,(0))\{g 1. {8%(0)}
kont
+ S {200}, {8V (0}
T n,jﬁ( o 8 IREAIH
+{§mmn&g®wn5m§{wu i=12 (10c)
where the dagger denotes Hermitian conjugate, and the Among the above integrals, the ones in yéﬂ =y =

integrals with respect to p in (10c) are calculated numer-
ically.

1V. ComPUTED RESULTS

For numerical computation, introducing a parameter
D™ we divide the integrals with respect to y in the
boundary element approach for Q§" into two parts,
namely,

those iny; <y < D™

and
those in D'") < y < oo,
Similarly, for Q%°,

those in —o0 < y < —D7

DM DO <y <y and -DT =y = D® are
calculated analytically, but the others are neglected by
choosing the values of D™ and D adequately.

Furthermore, introducing a parameter ¢;, we divide the
integrals with respect to o in the analytical approach into
three parts, namely,

those in 0 < p < n, ky (propagating part),

those in n;ky < p < ¢;n,ky (nonpropagating part) ,

and
those in ¢, 1, 1kg < p < o0 (nonpropagating part),

where the first two parts are calculated numerically and
the last part is neglected by choosing the value of ¢, (¢, >
1) adequately. For simplicity, the relation ¢, = ¢, = c is
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Fig. 2. Three kinds of step-discontinuities.

TABLE I
VARIATION OF SOLUTIONS WITH VALUES OF ¢, WHERE D" = 2\
+ (d, —d)/2axp D' = 4N + (d, + d)) /2

d/d, ¢ |Ro|2 lTolz P, P,
15 2 0.00003 0.93541 0.06455 0.99999
. 4 0.00003 0.93540 0.06455 0.99999
2.0 2 0.00007 0.88892 0.11099 0.99998
" 4 0.00007 0.88892 0.11099 0.99998
TABLE II

VARIATION OF SOLUTIONS WITH VALUES OF D'*?, WHERE ¢ = 2 AND
D7 =4\ + (dy + dy)/2

d,/d, D [Ry|? |Tol? P, P,
15 A+ 0.25 4, 0.00003 0.93541 0.06454 0.99998
: 3N+ 0.254, 0.00003 0.93541 0.06455 0.99999
2.0 A+ 0.54d, 0.00007 0.88892 0.11098 0.99997
! 3x +0.54, 0.00007 0.88892 0.11099 0.99998

used below. A double-exponential formula [5] is used for
the numerical integration over p.

We consider three kinds of step-discontinuities as
shown in Fig. 2, where ny = 1.515, n, = 1.61, ny = 1,
dy = 03 pmor 0.4 um, N = 0.6328 um, and the fun-
damental TE or TM mode incidence is assumed. Conver-
gence of the solution should be checked on values of c,
D™, and D7). We investigate the convergence for step
A with TE mode incidence and d, = 0.3 um.

Table I shows the variation of solutions with values of
¢, where P, and P, represent total radiated power (P, +
P,,) and total power (|Ry|* + |Ty|* + P,), respectively.
Since the results for ¢ = 2 are almost the same as those
forc = 4, we use ¢ = 2.

Appropriate values of D) and D™ are dependent on
the spread of the guided mode over the y direction. Tables
IT and III show the variation of solutions with some values
of D™ and D7, respectively, which are chosen in view
of a field distribution of the fundamental guided mode
shown in Fig. 3. From these tables, it is reasonable to
decide D' =N + (d, — d)/2and D7) = 4\ + (4, +
dy/2.

Figs. 4 and 5 show the transmitted power and radiated
power of steps A, B, and C for the TE and TM mode
incidences, respectively. Our results of the radiated power
of step A agree well with those of Ramaswamy and Su-
choski [2]. In the case of the TE mode incidence of d; =
0.4 um, the second-order mode (m = 1) exists in wave-

TABLE III
VARIATION OF SOLUTIONS WITH VALUES OF D™, WHERE ¢ = 2 AND
D =N+ (d, —d)/2

dy/d, D |RoI* |Tol® P, P,
15 3N + 1.254, 0.00003 0.93539 0.06449 0.99991
’ SA+1.254, 0.00003 0.93541 0.06453 0.99997
2.0 3N+ 1.54d, 0.00007 0.88891 0.11094 0.99992
’ 5+ 1.54, 0.00007 0.88892 0.11098 0.99997
1
" TE guided mode
= | d=0.3um(d/A~0.47)
g [ d=0.4pm(d/A~0.63)
H
g 0.5+
Z L
= L
O
@ -
0 rers SAELT Al B B I
-5 -4 -3 -2 -1 0 1
y/A
(a)
1 -
- TM guided mode
_ + d=0.3um(d/A~0.47)
S SRR d=0.4um(d/A~0.63)
g
2 i
=
-ﬁ 0.5 |-
._..g L
= L
[}
!E L
0 TR T E S P I S

-5 -4 -3 2 1 0 1
yiA
(b)

Fig. 3. Field distribution (|¢|) of the fundamental guided mode, where d
is waveguide thickness.

guide 2 for d, /d; = 1.97, and especially for step C it is
strongly excited. Also, we notice that the radiated power
is large in order of steps B, A, and C except for TE mode
incidence of d; = 0.4 pm.

V. CONCLUSION

We have extended a combined approach of the finite-
element and boundary-element methods to the analysis of
discontinuities in an asymmetric slab waveguide. Here all
the eigenmodes, namely guided modes, substrate radia-
tion modes, and substrate-cover radiation modes are taken
into account. Also, to show the validity and usefulness of
this method, computed results have been given for three
kinds of step-discontinuities with TE and TM mode in-
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Fig. 4. Scattering characteristics of steps for TE mode incidence.

cidences. Some of the results are for the case where the

second-order mode exists.

This approach can be applied to arbitrarily shaped dis-
continuities, and is appropriate as a ‘solver for CAD or
CAE. In the future, we intend to construct a CAE system
on a workstation for the design of dielectric waveguide

junctions.

APPENDIX

For simplicity the subscript i (i = 1, 2) is omitted.

A. Guided Modes

1
_____hm
D, ()

(y) = 1 h(y)
m VD, P(»)

e ,
D, = S (hn( ) J
o p(Y)

Jn(y) =

(Al)

(A2)

(A3)
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Fig. 5. Scattering characteristics of steps for TM mode incidence.

py (o <y = —d)
p(y)=9p (md=y=0 (Ad)
p3 0=sy< »
)
( <cos K,d + P2 %m in Kmd> exp [ya.(y + d)]
P3Kp
(—2 <y =< —d)
ha(y) =
ﬁ sy =2 Gn kv (—d =<y <0

P3kp

&eXp (=6, 0 =y < )
(A5)

where p; (j = 1, 2) is 1 for TE modes and n} for TM

modes.

The dispersion relation for §,, is given as

tan k,,d

= pZKm(p2'Ym + P 6m)/(p1p3'<3n - p%’Ym 6m)
(A6)
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where
Ym = NBH — nikp (A7)
kn = Nn3k§ — B, (A8)
8m = VB2 ~ nikp. (A9)
B. Substrate Radiation Modes (r = 0)
1
%0, y) = —=—==1""%0, y) (A10)
VDO (p)
1 r%o,
g%, y) = (2, (AlD)

vDOp) p(Y)

S“’ RO, R O(p', y) J

D9(p) 8(p — p")

pCy)
(A12)
4 5
<cos:<d +&——sinxd> cos p(y + d)
P3K
)
+ <gl—l£sinxd —P—L-cosxd>
bap p3p
%P, y) =< -sinp(y + d)
(-0 <y < —d) (A13)
6
cosxy-&—sinxy (—d=y=<0
P3K
\exp (=6 ) (0 < y < )
B = Vniks ~ p* (Al4)
k = V(i — nhHki + p? (A15)
8 = J(ni - ndks - o’ (A16)
where 8 (o — p’) is the Dirac é function and p is ther

wavenumber of the y direction in the substrate layer.

C. Substrate-Cover Radiation Modes (r = 1, 2)

Relations of £, g® and D (r = 1, 2) are expressed
as ones obtained by replacing the superscript O with r in
(A10) ~ (A12).

((cosxd+ C.sinkd)cosp (y + d)

+Ell-<—(sin:<d— C.cos k d)
P20

-sinp(y + d)

h%p, y) =4 (o <ys —d)

(A1T)

cos ky — C, sin ky (-d =y=0

cos Ay — P C,sin Ay
pA

\ 0=<y<

A p3 pp* cos’ kd + p? psk? sin® kd + p, pioA
ps Pk Acos’ kd + pip? Asin® kd + p, psxp

(A18)

C‘z

Cz = "‘Cl
g = Vniks — p (propagating part) (Alé)
—jvp? — nik}  (nonpropagating part)

k = V(i — ndHki + p? (A20)
— 2 2 2
A= p? =} - nd)kd. (A21)
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