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Analysis of Discontinuities in an Asymetric

Dielectric Slab Waveguide by Combination

of Finite and Boundary Elements
Koichi Hirayama, Member, IEEE, and Masanori Koshiba, Senior Member, IEEE

Abstract–An approach that combines the finite-element and
bonndary-element methods is extended to the analysis of dis-

continuities in an asymmetric slab waveguide. The discontinu-
ity region is divided into three regions. One is a finite region
with arbitrary inhomogeneities, and the others are semi-infinite

and homogeneous regions. The finite-element and boundary-

element methods are applied to the former and latter regions,
respectively. For uniform waveguide regions connected to dis-
continuities, analytical solutions are used, in which all the ei-

genmodes, namely guided modes, substrate radiation modes,

and substrate-cover radiation modes are taken into account.
To show the validit y and usefulness of this approach, computed

results are given for three kinds of step-discontinuities with TE
and TM mode incidence.

I. INTRODUCTION

sINCE an optical waveguide is in general made up of

three dielectric layers called cover, film, and sub-

strate, it is very important to analyze discontinuities in an

asymmetric planar dielectric waveguide. However, there

are few theoretical methods for the solution of the discon-

tinuities, One of the reasons is that the asymmetric wave-

guide has complicated eigenmodes consisting of guided

modes, substrate radiation modes, and substrate-cover

radiation modes. The nature and behavior of these modes

are detailed i.n Chapter 1 of [1]. An approach proposed by

V. Ramaswamy and P. G. Suchoski, Jr. [2] takes trans-

mitted guided modes, substrate radiation modes, and the

propagating part of substrate-cover radiation modes into

account, but ignores reflected guided modes and the non-

propagating part of substrate-cover radiation modes.

For discontinuities in a dielectric waveguide, we have

proposed an approach based on a combination of the fi-

nite-element and boundary-element methods (CFBEM)

[3], [4], and have confirmed that the CFBEM is very use-

ful for arbitrarily shaped discontinuities, However, the

approach is limited to discontinuities in a symmetric slab

waveguide.
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In this paper, we extend the CFBEM to the analysis of

discontinuities in an asymmetric slab waveguide. Here,

all the eigenmodes in the waveguide are taken into ac-

count. To show the validity and usefulness of this ap-

proach, computed results are given for three kinds of step-

discontinuities with TE and TM mode incidence.

II. BASIC EQUATIONS

Consider an asymmetric planar dielectric waveguide as

shown in Fig. 1. The boundaries 1’~) and 1’~-) are placed

at infinity ( y = + m) and the boundary

r, = rl~ + rj~) + rj;) (i = 1, 2)

connects the discontinuity region to the uniform wave-

guide i, where di and ni,( j = 1, 2, 3) are the thickness

and the refractive index of waveguide i(niz > nrl > n13),

respectively. The region OF surrounded by the boundary

r~ = rlF + r2F + rj+) + r!-)

completely encloses the discontinuity region, the region

fl~) is surrounded by the boundaries

r~) = r\~) + rfi) + r~)

and 1’~), and the region C$) is surrounded by the boun-

daries

r~-) = rfj) + r~~) + r!-)

and I’!-).
Assuming that there is no variation of fields and refrac-

tive indices in the horizontal transverse z direction (see

Fig. 1), we consider the following basic equation for har-

monic wave propagation in the x direction:

(1)

where

rP=EZp=l q=iz2 for TE modes (2a)

@= H,p=n2q=l for TM modes (2b)

‘0 = 27r/A. (3)
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Fig. 1. Longitudinal cross-section of asy]mrnetric planar clielectric wave-

guide.

Here EZ and HZ are the z components of the electric and

magnetic fields, respectively, and h is the wavelength of

a plane wave in free space.

Since the normal derivative of @ on 171, 1’2, 1’~), and

1’-) appears in the finite element, boundary element, and

analytical approaches which will be presented in the next

section, in advance we define a function 4 proportional to

it as follows:

HI. MATHEMATICAL FORMULATION

A. Finite Element Approach for OF

Dividing the region !2F into a number of cluadratic tri-

angular elements, using a Galerkin procedure on (1), con-

sidering the contributions of all elements, ancl eliminating

internal variables, namely the nodal points in !JF except

rF, we obtain the following small-sized matrix, eqUatiOn:

[Al {4}F = [J~l {*}F ‘,, (5)

where the components of the {{$}~ and { ~}l. vectors are

the values of @ and ~ at the nodal points on r~, respec-

tively.

B. Boundary Element Approach for ~~) and Q~-)

Applying the BEM with quadratic line element to the

regions Or) and fl~-), and considering the radiation con-

dition on 1’~) and 1’~-), we obtain the following matrix

equations:

[H](+) {@}~) = [G](+) {~}~+) in Qr) (6a)

[H](-) {@}$-) = [G](-) {4}~-) in O!–) (6b) ,

where the components of the {0} ~) and {4} ~) vectors

are the values of @ and ~ at the nodal points on I’F),

respectively.

C. Analytical Approach

Assuming that the fundamental mode (m = O) of unit

amplitude is incident from the left side of waveguide 1 in

Fig. 1, @ on rl (i = 1, 2) may be expressed analytically

as

{@}j = ail{f}l + [Zli {+}i (7)

where

{f}, = ~{fl}l (8a)

M,–1

[Z], = ~~o* {fm}i{&rr}T

rm 1

x ({ f%)}, {g(’) (P)}T

+ {f(a)(p)}i{ ~(2)(P)l~~ d~

{%rr}i=~ \ gwrly’){~}, dv’
e’

{ g(rb)},‘; je,g!%, Y’) {~}, dy’,

r= 0,1,2.

(8b)

(8c)

(8d)

Here 6il is the Kronecker 6, p is the wavenumber of the y

direction in the substrate layer, and Mi is the number of

guided modes in waveguide i. The components of the

{@}i, {Y}i, {f~}i, and {f(r) (p)}~ (r = O, 1,2) vectors are
the values of 0, t, ~~( y), and f !’)( p, y), respectively,
{IV }i is the shape function vector on ri, and the super-

script T denotes a transpose. A summary of the mode

functions jj~( y), g,~( y), f !)(P, y), and gj’)(o, Y), and of

the propagation constants ‘(1,~ and pi(p) is given in the

Appendix. In (8b), the integrals with respect to p are cal-
cul~ted numerically.

D. Combination of Finite and Boundary Elements

From (5), (6), and (7), we obtain the following
matrix equation:

final
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(9)

are the values of @ and 4 at the nodal points on 1’~),
those in -D(-) s y s y$-).

respectively, [1] is a unit matrix, [0] is a null matrix, and

{0} is a null vector. The columns of [A’] and [B’] cor- Also, we divide the integrals with respect to y in the an-

responding to the nodal points of I’F are the same as those alytical approach into three parts, namely,

of [A] and [B], respectively, and the others are zero.

[H’](+) and [G’](+) are generated in the similar way from
those in –m < y s –D(-),

[H](*) and [G](*), respectively, those in –D(-) s y s D(+),

The solutions of (9) allow the determination of the nor-

malized reflected power lR~ 12 and the normalized trans-
and

mitted power IT,. 12of the mth mode, and the normalized those in D(+) s y < m.
radiated power Pi, in waveguide i as follows:

.

(lOb)

+ {p(*) (p)}l{P(2)(P)}:)

where the dagger denotes Hermitian conjugate, and the

integrals with respect to p in ( 10c) are calculated numer-

ically.

IV. COMPUTED RESULTS

For numerical computation, introducing a parameter

D ‘+), we divide the integrals with respect to y in the

boundary element approach for fl~) into two parts,

namely,

(+)
those in ys < y < D(+)

and

those in D(+) s y < CO.

Similarly, for fl$-),

those in –m < y < –D(-)

)dp {~},, i=l,2 (1OC)

Among the above integrals, the ones in y ~) s y s
~(+)

–D(-) ~ Y ~ Y!-), and –D(-) ~ Y ~ D(+) are
calc~lated analytically, but the others are neglected by

choosing the values of D ‘+) and D ‘–) adequately.

Furthermore, introducing a parameter ci, we divide the

integrals with respect to o in the analytical approach into

three parts, namely,

those in O s p s nllko (propagating part),

those in nilko = p = ci nilko (nonpropagating part),

and

those in c, n,lko s p < co (nonpropagating part),

where the first two parts are calculated numerically and

the last part is neglected by choosing the value of c1 (c, >

1) adequately. For simplicity, the relation c1 = C2 = c is
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Fig. 2. Three kinds of step-discontinu itles.

TABLE I
VARIATION OF SOLUTIONS WITH VALUES OF c, WHERED‘ ‘) = 2A

+ (d2 - d,)/2 AND D(-) = 4)\ + (dz + d,)/2

d2/d, c IR012 ]TO[2 P, P,

1.5
2 0.00003 0.93541 0.06455 0.99999
4 0.00003 0.93540 0.06455 0.99999

2.0
2 0.00007 0.88892 0.11099 0.99998
4 0.00007 0.88892 0.11099 0.99998

TABLE II

VARIATION OF SOLUTIONS WITH VALUES C)F D( ‘), WHERE c = 2 AND

D(-) = 4A + (d, + dl)/2

d2/d, D<+) \RO]2 l;ro[~ P, P,

1.5
A + 0.25 d, 0.00003 0.93541 0.06454 0.99998

3A + 0.25 d] 0.00003 0.93541 0.0645.5 0.99999

2.0
1 + 0.5 d, 0.00007 0.88892 0.11098 0.99997

3A + 0.5 d, 0.00007 0.88892 0.11099 0.99998

used below. A double-exponentiall formula [5] is used for

the numerical integration over p.

We consider three kinds of step-discontmuities as

shown in Fig. 2, where n, = 1.515, n2 = 1.61, n~ = 1,

d, = 0.3 pm or 0.4 pm, A = 0.6328 pm, and the fun-

damental TE or TM mode incidence is assumed. Conver-

gence of the solution should be checked on values of c,

~(+), and D(-). W e investigate the convergence for step

A with TE mode incidence and d, = 0.3 ~m.

Table I shows the variation of solutions with values of

c, where P, and Pt represent total radiated power (Pl, +

P2,) and total power ( IRO12 + IT()12 + P.), respectively.

Since the results for c = 2 are almost the same as those

forc=4, weusec =2.

Appropriate values of D ‘+) and D ‘-) are dependent on

the spread of the guided mode over they direction, Tables

II and III show the variation of solutions with some values

of D ‘+) and D(‘), respectively, which are chosen in view

of a field distribution of the fundamental guided mode

shown in Fig, 3. From these tables, it is reasonable to

decide n(+) = A + (dz – dl)/2 au-tdll(-) = 4A + (d2 i-

dl)/2.

Figs. 4 and 5 show the transmitted power and radiated
power of steps A, B, and C for the TE and TM mode

incidence, respectively. Our resulks of the radiated power

of step A agree well with those c)f Ramaswamy and Su-

choski [2]. In the case of the TE tnode incidence of d, =

0.4 ~m, the second-order mode (m = 1) exists in wave-

TABLE HI

VARIATION OF SOLUTIONS WITH VALUES OF D( ‘), WHERE c = 2 AND

D(’) = A + (d2 – dl)/2

dz /d, ~(-) IR012 lTol’ P, P,

1.5
3k + 1.25 d, 0.00003 0.93539 0.06449 0.99991
5A + 1,25 d, 0.00003 0.93541 0.06453 0.99997

2.0
3A+ l.fidl 0.000(17 0.88891 0.11094 0.99992
5k + l.tidl 0.00007 0.88892 0.11098 0.99997
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Fig. 3. Field distribution ( lq$l) of the fundamental guided mode, where d
is waveguide thickness.

guide 2 for d2 /dl > 1.97, and especially for step C it is

strongly excited. Also, we notice that the radiated power

is large in order of steps B, A, and C except for TE mode

incidence of dl = 0.4 pm,

V. CONCLUSION

We have extended a combined approach of the finite-

element and boundary-element methods to the analysis of

discontinuities in an asymmetric slab waveguide. Here all
the eigenmodes, namely guided modes, substrate radia-

tion modes, and substrate-cover radiation modes are taken

into account. Also, to show the validity and usefulness of

this method, computed results have been given for three

kinds of step-discontinuities with TE and TM mode in-
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Fig. 4. Scattering characteristics of steps for TE mode incidence

cidences. Some of the results are for the case where the

second-order mode exists.

This approach can be applied to arbitrarily shaped dis-

continuities, and is appropriate as a solver for CAD or

CAE. In the future, we intend to construct a CAE system

on a workstation for the design of dielectric waveguide

junctions.

APPENDIX

For simplicity the subscript i (i = 1, 2) is omitted.

A. Guided Modes

(Al)

(A2)

(A3)
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Fig. 5. Scattering characteristics of steps for TM mode incidence

[

PI (–@ < y 5 –d)

P(Y) = P2 (–d s Y s O) (A4)

p~ (os y<@)

[( p~ dm
COS Km d +

)
— sin K.d exp [Y.( y + d)]
PyKm

h~( y) =

\

p~ 8m
COS Kmy – — sm Kmy (–d<y <O)

p~Km

Lexp (–d. y) (O s Y < m)

(AS)

where pj (j = 1, 2) is 1 for TE modes and n; for TM
modes.

The dispersion relation for (3~ is given as
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B. Substrate Radiation Modes (r = O)

p(p, y) = 1 h(”yp, y)m
(A1O)

1 h (“)(p, y)
g(0)(P, Y) =

<~ MY)
(Al 1)

D(o)(p)a(p – p’) = Imh(”)(p,y)ltqp’, y)
dy

—Cn P(Y)

(A12)

((cmd+p’~
)

—sin Kd cosp(y+d)
p~K

1 (+p~sin Kd_p, f3

)
—cos Kd

P2P P3P

h(o)(p, y) = .sinp(y+d)

(–m < y S –d)I (A13)

p~ 6
COSKy “ — sin Ky (–d<y <O)

p~K

(exp (-6 y) (O s y < CO)

/3=- (A14)

K = ~(n~ – nf)k~ + P* (A15)

6 = J(n~ – n~)k~ – P* (A16)

where 8 (o – p‘ ) is the Dirac 6 function and p is the

wavenumber of the y direction in the substrate layer.

C. Substrate-cover Radiation Modes (r = 1, 2)

Relations of ~(r), g”), and D”) (r = 1, 2) are expressed

as ones obtained by replacing the superscript O with r in

(A1O) - (A12).

~(cos Kd-tc, sin Kd)cosp(y+d)

+ p,K
—(sin Kd– Crcosrfd)
P2Q

.sinp(y+d)

hqp, y) = I (–CO < y < –d)
(A17)

Cos Ky – c, sin Ky (–dsys O)

cos Ay – E C. sin Ay
pzA

(o<y <co)

JA p~p3p2cos2 Kd +p~p3K2 sin’ Kd +pl p~pA
c,= —“

p3 p~K2 ACOS2 Kd -t- p~p2A sin2 Kd + pi J2JK2p

(A 18)

C2= –c,

[

- (propagating, part)
~= (A19)

–j ~ (nonpropagating part)

K = J(n~ – n~)k~ + p’ (A20)

A = JP2 – (n; – n~)k~. (A21)
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